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Our goal
Let’s review the beginning of the thread on this subject. Our applied research project, Politician Truth Ratings, has reached what appears to be the crux of the entire project. How can a claim-check measure the truth of a claim accurately and precisely? 
We need to define our terms. According to Wikipedia:
In the fields of science and engineering, the accuracy of a measurement system is the degree of closeness of measurements of a quantity to that quantity's true value. The precision of a measurement system, related to reproducibility and repeatability, is the degree to which repeated measurements under unchanged conditions show the same results. Although the two words precision and accuracy can be synonymous in colloquial use, they are deliberately contrasted in the context of the scientific method.
The field of statistics, where the interpretation of measurements plays a central role, prefers to use the terms bias and variability instead of accuracy and precision: bias is the amount of inaccuracy and variability is the amount of imprecision.
A measurement system is considered valid if it is both accurate and precise.
Thus, our goal is to create a valid measurement system for all types of claims. What we have here is just one more case of inventing a new form of measurement. Montserrat has found this research area is labeled "instrumentation." Or as Scott Collison said, what we're trying to do is "operationalize the truth."
The knowledge gap to fill
Let's see if we can pinpoint our knowledge gap. Then we can focus on filling the gap. We are attempting to measure the truth of a claim in a claim-check. What exactly is the truth here? It's the calculated truth confidence level (CL) of the argument's claim.
The CL of a claim depends on all the numbers and their relationships used in the calculation. Therefore, if we can improve Structured Argument Analysis so that it can help users accurately and precisely set each of those numbers and relationships, then we have a tool for accurately and precisely measuring the truth of a claim. The tool must support these categories of decisions:



1. Setting the confidence level of facts.
2. Setting the confidence level of rules.
3. Selecting the correct fact or reusable claim.
4. Selecting the correct rule.
5. Setting the weights used in rule inputs.
6. Defining the argument tree relationships.
Our challenge is to figure out how to develop the tool protocols and features that make these decisions easy, fast, accurate, and precise. This can be done by solving one small piece of the challenge at a time, plus continuously improving the tool as we go.
The five types of rules
Arguments revolve around their rules. The hardest part of constructing an argument is selecting the correct rule. To make that step easier the rules are organized into a hierarchical tree. Under the root of the tree are four container folders:
Fallacies (1st type)
Non-fallacies (2nd type)
Opposite Pairs (3rd type)
Spectrum Sets
	Evidence – Inconsistent (4th type)
	Evidence – Consistent (4th type)
	Statistical Certainty (5th type)
The first three container folders contain rules whose CL is zero or 100%. These rules are easy to understand and thus easy to choose.
The fourth container folder, Spectrum Sets, contains rules whose CL ranges from zero to 100%. One of these is Statistical Certainty. This area of mathematics is well-developed, so it’s easy to select the right rule.  This area is so tightly formulated it may be considered a type of deductive rule, where one tries to reach a conclusion using complete knowledge.
This leaves the evidence folders, where our challenge lies. These are the inductive rules, where one tries to reach a conclusion using incomplete knowledge. Most difficult decisions, and most difficult claims to analyze, use inductive rules.
The weakness of the evidence rules 
Click on the Evidence - Inconsistent folder. Study its description. That's a start on protocols to make selecting the right rule with the right CL easy and correct. The 0% CL rule selection criteria looks okay but not strong. But the others look weak. There’s way too much hand waving and intuition. The result will be low precision, which means high variability across claim-checks. That is the crux of our problem.
Bayes Rule
So, what can we do? What is the missing abstraction? Fortunately, there’s an answer. Our problem was solved long ago by the invention of Bayes Rule. This allows the analyst to quantify the uncertainty arising from incomplete knowledge by expressing it as the probability something is true. If we can figure out a way to easily and correctly apply Bayes Rule to rule inputs, then our problem is solved.
From The Book of Why: The New Science of Cause and Effect, by Judea Pearl, p89:
“Bayesian analysis goes like this: Prior Belief + New Evidence  Revised Belief”
Reversing the equation, the standard form of Bayes Rule is: 
[bookmark: _Hlk524249469]Posterior probability = Prior probability x new evidence
Or in more concise form:
P(H|A) = P(H) x P(A|H) / P(A)
Where | means given. The concise form reads like this:
Probability (Hypothesis is true given input A) = Prior Probability (Hypothesis is true) x Probability (A is true given the hypothesis is true) / Probability (A is true)
Here posterior is the result, prior is the probability before data collection, and new evidence is what you have collected from observation or experiment. If prior is omitted, then the formula is the equivalent of traditional statistics, where the frequency of occurrence determines the posterior probability. (Not completely sure I understand this yet.)
This leads to the terms for those using traditional statistics versus Bayes Rule. They are frequentists or Bayesians. The two schools have been locked in a battle of dominance for two centuries. Recently, starting around 1980, the Bayesians have pulled ahead due to availability of cheap computing power, creation of easy to apply calculation methods, and a string of solved problems that could not be solved by frequentist methods. 
The timing is perfect for our project. We don’t have to invent all that much. We just need to deeply understand what’s available and apply it to our tool.
We need to exercise caution here. Historically, those trained in frequentist methods find it hard or impossible to adopt Bayesian methods. I’ve personally found the transition difficult. It’s a mind-boggling new paradigm. But by immersing myself in the literature and stepping through examples, I’m now starting to intuitively think in either world, whichever is most appropriate. I’m still in transition.
We need to be aware that others will find the transition difficult too. Hopefully tool design can shield users from the need to think in terms of Bayes Rule. Instead, they are just using the tool to build arguments.
Decision-making chains
The addition of Bayes Rule to statistics has caused a gigantic revolution in applied mathematics. Use of Bayes Rule allows chaining of decision-making. The posterior probability of one calculation becomes the prior probability for the next calculation. Bayes Rule now lies at the heart of technologies like self-driving cars, artificial intelligence pattern recognition, automatic stock trading algorithms, new tools for business decision-making under uncertainty, expert systems, weather prediction, and hundreds of more new technologies. 
Decision-making chains apply to rule inputs in Structured Argument Analysis. I came to this conclusion when reading this passage in Sharon McGrayne’s book on The theory that would not die: How Bayes Rule cracked the enigma code, hunted down Russian submarines, and emerged triumphant from two centuries of controversy: (p116)
When Cornfield worked with researchers who used mice to screen for anticancer drugs, the rigidity of frequentist methods struck him like a blow from behind. According to their rules, even if their initial test results disproved their hypothesis, they had to take six more observations before stopping the experiment. Frequentist methods also banned switching a patient to better treatment before a clinical trial was finished. Frequentist experimenters could not monitor interim results during the clinical trial, examine treatment effect on subgroups of patients, or follow leads from the data with further unplanned analysis. When Cornfield discovered that Bayesian methods would let him reject some hypotheses after only two solidly adverse observations, he was converted.
That last sentence is a shocker. It says that using Bayes Rule, you only need enough rule inputs (observations) to prove or disprove a hypothesis. Once the hypothesis is proven or disproven, so to speak, you can stop collecting data.
[bookmark: StandardCutoff]Standard cutoffs for hypothesis rejection or acceptance can be used. When building an argument using Bayes Rule, each rule input is an observation collected from the real world. As each input is added, Bayes Rule lets the tool use that data to calculate the updated conclusion truth confidence level (CL). As each input is added, we are essentially forming a decision-making chain. The output of the chain is the conclusion CL. Once the CL falls below 5% or rises above 95%, we have reached the standard definition of hypothesis rejection or acceptance, and can stop looking for more rule inputs. Other cutoffs besides 5% and 95% can be used. All evidence must be considered.
This is exactly what our tool users need. When do you stop looking for more facts, reusable claims, or intermediate conclusions? When your argument is strong enough.
Thwink of all those fact-checks and articles that go on and on, presenting a fuzzy mountain of reasons something is true or false. The authors have no clear idea how strong their argument is, so they pile on the facts until the truth is obvious, to them and hopefully their readers. But this leads to verbose writing, in an age where people are reading less and less. And it leads to unclear writing, when what’s needed in a world swirling with muddy deception is crystal clear clarity. How does one cut through the fog of deception with a few swift slices, and reveal the bones of truth? With only enough rule inputs to show the conclusion is probably false or true.


Adding Bayes Rule to Structured Argument Analysis
If the above strategy is correct enough to get started then we can move into implementation. Here is the beginning of an implementation plan:
1. Deeply grasp how Bayes Rule works by calculating 5 or more examples.
2. List and understand the 4 or more different forms of Bayes Rule. Why do they differ? What case types best fit each form?
3. Determine if our use of Bayes Rule is generic or requires multiple cases. If multiple, pick one case to start with.
4. Standardize the math involved so we can easily calculate a conclusion CL for 1, 2, 3, or more rule inputs. Note that a pseudo input is the first prior probability. This starts the chain or set.
5. Figure out what probability or other number(s) should be associated with facts and reusable claims. 
6. Do several arguments by hand, without the tool. Test the entire concept. Include the claim-checks we’ve done so far that are inductive.
7. Implement a test software version by adding the node data to the mark data text. An example is [PEHnn] where PEH means the probability of event given hypothesis is nn percent. The rule would have [BR] in the rule database text. 
8. See how well the tool works on ten or more arguments, each with a different type of inductive reasoning as much as possible.
9. Once results look good, change the software as needed to make the whole approach easy and fast to use. This will probably mean removing the bracketed data from node text. The evidence folders will probably disappear, and be replaced by something containing one or more forms of Bayes Rule.
Synthesis 
Much further study of the Bayes literature led to a synthesis of how to apply Bayes Rule to Structured Argument Analysis. Working with Montserrat on September 16, 2018, we arrived at a goal and initial elements. The synthesis goal is to define the foundational elements of how to measure the truth using Structured Argument Analysis. 
Element 1. Define the axioms for the Structured Argument Analysis system.
This system does not seek to perfectly measure “the truth” or settle the philosophical question of “What is the truth?” Instead, it seeks to define what the truth is for an important class of propositions and then, using that definition, measure the truth of those propositions. In the words of Scott Collison, we are “operationalizing the truth.” This is done by defining the axioms that define the system. It is the elements as a whole that define the truth, from the perspective of the Structured Argument Analysis system. 
This approach extends the work of E. T. Jaynes as articulated in Probability Theory: The Logic of Science, 1996. Chapter One, on Plausible Reasoning, says: (bolding added)
“We now turn to our extension of logic, which is to follow from the conditions discussed next. We call them ‘desiderata’ rather than axioms because they do not assert that anything is ‘true’ but only state what appear to be desirable goals.”
By contrast, our axioms explicity define what is “true” within the Structured Argument Analysis system. 
Jaynes then lists five desiderata for a system of plausibility. These are a little cryptic, so below is a more readable version from Intelligent Sytems: Reasoning and Recognition, by James Crowley, 2015.
1. Degrees of plausibility are represented by real numbers, where a greater number represents more plausible. 
2. The system should have qualitative correspondence with (human) common sense. 
3. The solution should be consistent. If a conclusion can be reached by more than one way (sequence of inferences) then all ways must lead to the same result. 
4. All available evidence must be included. Evidence can not be arbitrarily ignored. (Reasoning must be non-ideological – no cherry picking as is popular with certain politicians and salesmen).
5. Equivalent states of knowledge should be represented by equivalent plausibility.
In later chapters Jaynes proceeds to derive the Sum and Product Rules of Probability. From these he derives the all-important Bayes Rule in Probability Form and other rules. 
Jaynes’ system is fundamentally Bayesian. His work is a strong deliberate break from the frequentist paradigm, just as our work is a strong deliberate break from the intuitive arguments of fact-checks. To make that break our system needs these additional axioms:
Axiom 1. Graphical representation – All arguments can be graphically represented by a tree structure consisting of five types of nodes: Claim, Intermediate Conclusion, Rule, Fact, and Reusable Claim, arranged as shown in the diagram below. By limiting the tool to a mere five types of nodes we achieve great economy of expression and extreme conceptual simplicity. This simplicity makes the tool much easier to build, learn, and use.
How the five types of nodes are arranged is shown in the image below. This is a frame (5:16) from the Thwink.org video on How Structured Argument Analsyis Works as Part of Politician Truth Ratings. 

[image: ]
From the video: 
This may be hard to believe, but in the knowledge world, all knowledge can be expressed using just these five types of nodes. 
A good analogy is the physical world, where atoms are made of just three types of things: electrons, protons, and neutrons. From these three things, mother nature built the entire physical universe of normal matter. Likewise, from these five types of argument nodes our species has built up all knowledge, including everything that’s written and everything you and I know. 
Now that we’ve entered the Information Age, we depend on a gigantic worldwide web of knowledge, of immense complexity.
Due to the internet, nearly all knowledge is connected. But it’s not structured and analyzed, so it’s only a world-wide web of pages with unknown levels of truth. That can be changed, with structured argument analysis, which shows how knowledge is connected and determines its level of truth.
Axiom 2. Measurement of the truth – An argument structure can be used to correctly calculate the truth probability of the claim and intermediate conclusion nodes in an argument, using information associated with the argument nodes. “Correctly” means that if the argument is built correctly, its truth probability can be calculated correctly. 
If tool users rigorously follow the tool use protocols to build correct arguments, the tool is guaranteed to produce the closest possible measurement of “the truth”. This is done is a uniform, transparent, fully quantified manner that allows for inspection, review, continuous improvement, and integration with machine processing (AI). In this manner the tool defines the objective truth.
Axiom 3. Unlimited size – Arguments of unlimited size can be created by use of reusable claims. Very large sets of arguments can be interconnected and achieve a known consistent level of truth, leading to a Worldwide Web of Knowledge of a known level of truth. Or you could call it a Worldwide Web of Truth.
Axiom 4. Fundamental unit – The most fundamental unit of an argument, the one that all reasoning starts from, is a fact. This unit is so simple its truth probability can be determined by inspection of the real world. Hence a fact needs no argument to calculate its truth. 
Facts are the “atoms” of the Structured Argument Analysis system. A pecular property of a set of connected arguments is that leaf arguments have no resuable claims. They have only facts, plus intermediate conclusions, rules, and a single claim.
Given the above axioms, how are we to actually implement the scheme described by the axioms? The additional elements provide the fundamental insights needed to do that.
Element 2. Classifying the five nodes into types creates a systematic, repeatable approach for easily and correctly building an argument within the framework of the five types.
For example, rules may be classified into deductive fallacy, deductive non-fallacy, inductive independent inputs, inductive dependent inputs, and so on. Facts may be classified into Boolean (true or false) for use by deductive rules, and non-Boolean for use in inductive rules. Reusable claims have the same types as facts since they are used interchangeably in constructing arguments. Claims and intermediate conclusions have types that give large hints as to which rules they need.
Element 3. Patterns exist for using node types and node characteristics to more rapidly and correctly build arguments.
Node types and their characteristics provide large clues for how an analyst should best proceed when building an argument. These types and characteristics can be organized into patterns. When the tool or user spots a pattern, the tool can recommend options or, if there is only one option, take the next step. Examples are:
[image: ]1. The cherry-picking pattern – A text contains a data oriented fact that’s true and uses that fact to justify a claim that is not true if additional data is considered. The tool would offer the user an argument template. The template would contain the fact and the claim, plus the cherry-picking rule, plus an additional default fact that would be used to explain how when more of the data is examined, a very different conclusion can be drawn. The user then fills in the template to analyze the claim. An example of a cherry-picking argument map is shown.
2. The taking credit for someone else’s work pattern – Montserrat spotted this pattern in her very first claim-check. Its argument structure nearly perfectly duplicated that of another claim-check. The pattern grew out of the way the two claims committed the same fallacy of taking credit for someone else’s work. The two claims were:
(1) Because of the work of President Trump and Republican leadership, the number of people collecting food stamps in the US declined by more than two million.
(2) Because of the Trump administration’s tax reform and pro-growth agenda, there are more jopb openings than American who are unemployed, for only the second time since the year 2000.
[image: ]The tool would help users spot this pattern and offer an argument template that would be filled in to analyze the claim. Below are the two argument maps with this pattern. Note the high similarity.

3. The evidence pattern – Many claims will fall into this pattern. The text contains one or more facts used as evidence to prove a proposition is true or false. The tool would help users spot this pattern and offer an argument template that would be filled in to analyze the claim, complete with the most appropriate form of Bayes Rule. We don’t yet have a good example of this to show, since we’ve not yet implemented Bayes Rule.
4. Using patterns to find rules – If the user is not sure what rule to use, they can fill in a form describing certain characteristics of the claim and the text. The tool would respond with a list of suggested rules to choose from. Since we expect that eventually there will be hundreds of rules, this can save time and increase quality.
These are preliminary examples of what’s possible. As the tool evolves we expect it to incorporate a very useful collection of easily spotted patterns, because people use mostly the same forms of arguments (and in particular mostly the same rules) over and over.
Element 4. A system for setting probabilities
How can we set fact probabilities correctly and not just guess? When using Bayes Rule, how can we correctly set the various probabilities the rule needs? Setting probabilities accurately and precisely is a fundamental requirement for performing Structured Argument Analysis.
A systematic approach to setting probabilities can use information types, like these:
1. Uncontested published information that’s widely available from a variety of sources. Examples are maps, word definitions, demographic data, and national statistics.  This info type receives a 100% probability.
2. Information published by a rated information source. For example, NewsCracker uses ratings for 56 news sources (like CNN, NYTimes, The Guardian) as a starting point for calculating the equivalent of a truth rating for news articles. Each source would have a truth rating, based on a standard analysis of some kind. The ratings would be updated as new information become available, just as NewsCracker does for info sources and Nate Silver’s election result forecasting system does for poll organizations. This info type receives the rating of its source. If multiple sources are used, this info type can become uncontested or the source ratings can be averaged in some manner that avoids low-rated sources dragging down the average.
3. Direct measurement. Sometimes you can measure something yourself and create an orginal fact, like the temperature at your location or who attended a meeting you were in. This info type receives a 100% probability unless it becomes contested or measurement error must be considered. 
4. Statistical measurement. By use of statistical sampling, the probability of the mean of a population of data and other probabilities can be calculated. This info type receives the calculated probability.
5. Estimation using subjective ranges. If none of the above apply, we fall back on subjective estimates. But these are guided by ranges of probability, so the estimates are standardized and more repeatable.
This problem has been solved before. An outstanding solution may be found in the Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties, November 2010. We have adapted Table 1 on page 3 to create the Standard Probabilities table.
	Thwink - Standard Probabilities

	Level
	Probability

	Certain
	100%

	Virtually certain
	99%

	Extremely likely
	95%

	Likely
	80%

	As likely as not
	50%

	Unlikely
	20%

	Extremely unlikely
	5%

	Exceptionally unlikely
	1%

	Impossible
	0%


	IPCC - Table 1. Likelihood Scale

	Term
	Outcome Likelihood

	Virtually certain
	99 to 100%

	Extremely likely
	95 to 100%

	Very likely
	90 to 100%

	Likely
	66 to 100%

	As likely as not
	33 to 66%

	Unlikely
	0 to 33%

	Very unlikely
	0 to 10%

	Extremely unlikely
	0 to 5%

	Exceptionally unlikely
	0 to 1%



[bookmark: StandardProbabilitiesTable]Two rows (Extremely likely and Extremely unlikely) were added to the IPCC table using the footnote under the IPCC table. This info type receives the probability in the Standard Probabilities table. 
For the adaptation, levels were added for Certain and Impossible. The Very likely and Very unlikely rows were deleted, so we don’t have too many rows. The more choices available in a subjective estimate, the less repeatable the estimate will be.
Ranges were changed to levels so that the right column contains a single probability rather than a range. The IPCC table ranges were converted to a probability near the center of the bottom of the range and the next range up. For example, “Likely” changed from 66 to 100% in the IPCC table to 80% in the Thwink table. However, “Extremely likely” changed from 95 to 100% in the IPCC table to 95% in the Thwink table, so that it has the widely used standard cutoff for hypothesis testing of 95%.
Only experience will tell how much the Standard Probabilities table needs to evolve.
Element 5. Use of Bayes Rule for inductive rules.
All rules of logic are deductive or inductive. A deductive rule uses complete information (certainty) to reach a certain conclusion that is 0% true (false) or 100% true. An inductive rule uses incomplete information (uncertainty) to reach a probable conclusion that ranges from 0% to 100% true, and is usually not completely true or false.
Once you get away from the deductive fallacies so often used by deceptive politicians (like cherry-picking, false dilemma, and strawman), most public discourse claims, as well as those in science, business, and government, are inductive. Our system thus needs a very strong approach to processing inductive claims. The only known method for doing this well is Bayesian inference, which centers on Bayes Rule.
This element will probably be the hardest to implement. Accordingly, we now return to the challenge of how to implement Bayes Rule.
Implementing Bayes Rule
Strategy
The strategy is to divide up the Structured Argument Analysis rules into rule types and then implement each rule type as best we can. Some, the easy rules (the deductive rules), will be fully supported from day one. Medium difficulty rules will be supported once we figure out how to calculate them. High difficulty rules will be partially supported by making simplifying assumptions to make the math tractable or by making estimates by following a procedure. If that can’t be done they will not be supported at all. As time goes by we will gradually figure out how to fully support all types of rules.
Equations
In the Structured Argument Analysis system, a rule works by using rule inputs to calculate a conclusion’s probability. The calculation is done by using appropriate equations. Below are the equations used. Names and terms are provided so that we can standardize our work. We’ve tried to make this information clear and complete enough so that you can see exactly how rule calculations work and help us spot errors. 
Several of the equations are presented at length in Introduction to Bayesian Inference for Psychology, by Etz and Vandekerckhove, 2018, in a special journal issue on Bayesian inference. This paper does an excellent job of explaining and demonstrating the basics of Bayesian inference. Extracts from the paper are in quotes. 
The paper begins a compelling introduction to Bayes Rule by asserting that “Here we will introduce the two cardinal rules of probability theory from which essentially all of Bayesian inference derives.” The two cardinal rules are the Product and Sum Rules.
Product Rule [footnoteRef:1] [1:  Presented in Etz, page 8.] 

P(A,B) = P(B) x P(A|B) = P(A) x P(B|A)
“The probability that A and B are both true is equal to the probability of B multiplied by the conditional probability of A assuming B is true. Due to symmetry, this is also equal to the probability of A multiplied by the conditional probability of B assuming A is true. The probability it rains today and tomorrow is the probability it first rains today multiplied by the probability it rains tomorrow given that we know it rained today.”
Statistical Independence Rule [footnoteRef:2] [2:  Ibid.] 

P(B) = P(B|A)
P(A,B) = P(A) x P(B|A) = P(A) x P(B)
“If we assume A and B are statistically independent then P(B) equals P(B|A), since knowing A happens tells us nothing about the chance B happens. In such cases, the product rule simplifies [to the second equation].” 
Note how for independent events, P(A,B) = P(A) x P(B), P(A,B,C) = P(A) x P(B) x P(C), and so on. To summarize, two events are independent if the probability of one occurring does not affect the probability of the other occurring.
Sum Rule [footnoteRef:3] [3:  Ibid.] 

P(B) = P(A1,B) + P(A2,B) + . . . + P(AK,B)
“Understanding the Sum Rule of Probability requires one further concept: the disjoint set. A disjoint set is nothing more than a collection of mutually exclusive events. To simplify the exposition, we will also assume that exactly one of these events must be true although that is not part of the common definition of such a set. The simplest example of a disjoint set is some event and its denial:” B and not B, or more concisely, (B, ~B). Here “~” means “not”. This leads to the simplest possible example of the Sum Rule:
P(B) = P(A,B) + P(~A,B)
“…to find the probability of event B alone you add up all the joint probabilities that involve both B and one element of a disjoint set. Intuitively, it is clear that if one of {A1,A2, . . . , AK} must be true, then the probability that one of these and B is true is equal to the base probability that B is true. In the context of empirical data collection, the disjoint set of possible outcomes is often called the sample space.”
Bayes Rule – Standard form [footnoteRef:4] [4:  Ibid, page 9.] 

P(conclusion|input) = P(conclusion) x P(input|conclusion) / P(input)
Posterior probability = Prior probability x new evidence
Posterior probability = Prior probability x observed data probability / prior data probability
Here we use (conclusion|input) rather than (hypothesis|x) or (cause|effect) so that we can directly apply Bayes Rule to Structured Argument Analysis. Note that “prior probability” is short for “prior conclusion probability,” as opposed to “prior data probability.” 
Bayes Rule is easily derived from the Product Rule:
P(A,B) = P(B) x P(A|B) = P(A) x P(B|A). Removing the left part, we get:
P(B) x P(A|B) = P(A) x P(B|A). Dividing by P(B) we get:
P(A|B) = P(A) x P(B|A) / P(B)
If we are concerned about the conclusion not happening, we can use this form:
P(~conclusion|input) = P(~conclusion) x P(input|~conclusion) / P(input)


Bayes Rule – No prior data form [footnoteRef:5] [5:  Ibid, page 10.] 

P(conclusion|input) = P(conclusion) x P(input|conclusion) / 
(P(conclusion) x P(input|conclusion) + (1 – P(conclusion)) x P(input|~conclusion))
The great advantage of Bayes Rule is the prior probability is much easier to calculate than the posterior probability, which makes calculating the posterior probability possible. But two additional terms are needed for the calculation: observed data probability and prior data probability. What do you do if you cannot calculate the prior data probability? When that occurs, you need the “no prior data form” of Bayes Rule, derived in this manner:
Bayes Rule in standard form is P(A|B) = P(A) x P(B|A) / P(B). How can we eliminate the need to know P(B)?
We know from the Sum Rule that P(B) = P(A,B) + P(~A,B).
P(A,B) = P(A) x P(B|A) and P(~A,B) = P(~A) x P(B|~A) so:
P(B) = P(A) x P(B|A) + P(~A) x P(B|~A). Substituting in the standard form gives:
P(A|B) = P(A) x P(B|A) / ( P(A) x P(B|A) + P(~A) x P(B|~A) ).
P(~A) = 1 – P(A), so the above equation becomes:
P(A|B) = P(A) x P(B|A) / ( P(A) x P(B|A) + (1 – P(A)) x P(B|~A) ).
This is the second most popular form of Bayes Rule for simple cases, where only a single input is used. For example, Nate Silver uses it in The Signal and the Noise, chapter 8, to present four examples of how Bayes Rule can be easily applied. The Etz paper uses it for its first example.
Rule types
[image: ]We can now apply foundational element 2. Classifying the five nodes into types creates a systematic, repeatable approach for easily and correctly building an argument within the framework of the five types. Rules are the heart of an argument, so that’s where we start. 
Below are the rule types and how each is calculated. The general form is P(conclusion) = P(inputs) x P(rule).
Rule type: Deductive fallacy
This is the easiest rule to calculate. A deductive fallacy is an error in logic so critical that the conclusion is entirely false. The calculation is P(conclusion) = P(inputs) x P(rule). Since P(rule) = 0 for this rule, P(conclusion) = 0. What P(inputs) is doesn’t matter.
A common case of a deductive fallacy occurs when a claimant uses a deductive non-fallacy with false inputs. The argument attempts to somehow hide the fact that the inputs are false, which causes the conclusion to look true. As of today, September 18, 2018, the TRS database contains two use cases of this. The particular rule used was “Cause and effect, no cause, but therefore effect anyhow – If A then B; Not A; Therefore B.” This is in the Cause and Effect – Invalid folder.
[bookmark: _Hlk525042489]Rule type: Deductive non-fallacy – Direct relationship, mutually exclusive inputs, complete inputs
This is the second easiest rule to calculate. It’s how the Structured Argument Analysis system presently works. 
In a deductive non-fallacy, if all the inputs are true, then so is the conclusion. If any input is false, the rule does not apply and a deductive fallacy is being used as explained above. That’s how classic logic works, as invented by Aristotle.
But in the 21st century, we need more than what classic logic provides. The basic form of a deductive non-fallacy is provided by Modus ponens: If A then B; A; Therefore B. What if A is not true or false, but partially true? If we can assume a direct relationship between the probability of A and B, which is common, then P(A) = P(B). For example, if there’s a 40% chance of A, then there’s a 40% chance of B. If there’s a 40% chance of rain this morning, then there’s a 40% chance of rain this afternoon. If there’s a 99% chance that this DNA test is correct, then there’s a 99% chance that person A fathered child B. And so on. 
For a single input, the calculation is P(conclusion) = P(input) x P(rule). Since this is a non-fallacy, P(rule) = 100%, so P(conclusion) = P(input).
However, a single input argument is simplistic. Most arguments have multiple inputs. In fact, Structured Argument Analysis requires two or more inputs with non-zero weights, since you cannot create one piece of new knowledge out of one piece of old knowledge, no matter now clever the rule. 
Multiple inputs can be used if the inputs are mutually exclusive and complete. The Sum Rule tell us that in this case the total probability of the inputs will equal 100%. P(rule) = 100%, so for multiple inputs the calculation is P(conclusion) = Sum of P(input). Here complete doesn’t mean every scrap of relevant information is included. It means all relevant information has been considered, and the inputs represent a sufficiently complete view of that information and no crucial information is omitted.
Let’s consider input weights. In the real world people assign different weights to the reasons (the inputs) behind a conclusion. If the reasons you won’t go outside are it’s raining and there’s a grizzly bear out there, the bear receives a lot more weight. This is why the Structured Argument Analysis system has weights for each rule input. The weights are zero, low (20%), medium (50%), high (80%) and central to the argument (100%). The calculation using weights is P(conclusion) = Sum of (Normalized weight x P(input)). 
Normalization is used so that all the weights add up to one. For example, consider three inputs with weights of 50%, 100%, and 20%. .5 + 1 + .2 = 1.7. To normalize the weights we divide by 1.7. This gives .5/1.7 + 1/1.7 + .2/1.7 = .29 + .59 + .12 = 1. Now the Sum of (Normalized weight x P(input)) will equal a maximum of 1, which would be 100% true.
Finally, let’s consider rule probability. To make the tool as flexible as possible, we deviate from the principle that a deductive non-fallacy rule must have a probability of 100% true. Instead, we allow the probability to vary. It can be anything you want. This reflects the way we actually think, rather than how we theoretically think. Thus the final form of the calculation is:
P(conclusion) = Sum of (Normalized weight x P(input)) x P(rule)
This is how the Structured Argument Analysis system presently works. If P(rule) = 0 then this is equivalent to a deductive fallacy.
Rule type: Inductive with independent inputs
For this rule, one or more independent inputs are required. For one input there’s actually two inputs: the prior probability and the probabilities associated with the input. For two inputs there’s three inputs: the prior probability, input one, and input two. And so on for three inputs or more. Inductive rules use Bayes Rule and do not use input weights. 
Because the inputs are independent of each other, decision chaining is used. This involves calculating Bayes Rule once for each input. The posterior probability of one calculation becomes the prior probability for the next calculation. This allows the user to add inputs to a rule until the desired conclusion probability is achieved. As we explained earlier on page 4:
Standard cutoffs for hypothesis rejection or acceptance can be used. When building an argument using Bayes Rule, each rule input is an observation collected from the real world. As each input is added, Bayes Rule lets the tool use that data to calculate the updated conclusion truth confidence level (CL). As each input is added, we are essentially forming a decision-making chain. The output of the chain is the conclusion CL. Once the CL falls below 5% or rises above 95%, we have reached the standard definition of hypothesis rejection or acceptance, and can stop looking for more rule inputs. Other cutoffs besides 5% and 95% can be used. All evidence must be considered.
To understand how this rule works let’s examine how three inputs would be calculated. The article on West Virginia GOP largely accurate about food stamp decline – Claim-check Version contains a rule that says “These three facts provide evidence strongly supporting the truth of a second intermediate conclusion.” That’s an inductive rule with independent inputs. 
Our standard cutoff for hypothesis acceptance is 95%. That’s high, so we start with a low prior probability of .1%. This means we are very conservative in our prior probability assumption and demand a strong set of facts before we will accept the conclusion. We don’t want to be wrong.
Using the no prior data form of Bayes Rule, we begin with:
P(conclusion|input) = P(conclusion) x P(input|conclusion) / 
( P(conclusion) x P(input|conclusion) + (1 – P(conclusion)) x P(input|~conclusion) )
The right side of the equation contains three unknown variables. These are:
P(conclusion) – The prior probability.
P(input|conclusion) – Probability input is true given conclusion is true.
P(input|~conclusion) – Probability input is true given conclusion is false.
[image: https://www.truthratings.org/images/rclaims/Graph_WestVirginia_FoodStampRecipients.png]In the claim-check article, the first fact says “food stamp use continued to steadily fall at the same rate under the Trump administration.” The second fact says “the main reason for the current continuation of growth, which is the main cause of the drop in foot stamp consumption, is the trend established under Obama could be expected to continue under Trump, if standard economic policies are employed.” The third fact says “the biggest reason for the drop is ‘the ongoing economic recovery that begin in the first year of the Obama administration.’ ” These facts are from independent sources. All are apparently true when the graph of food stamp use is examined. The conclusion says “The main reason by far for the continued economic growth under the Trump administration, and thus the drop in food stamp use, was the economic policies and performance of the Obama administration.” 
The first fact is based on visual inspection of the graph by the article authors. There was no discernable change in the trend when the administration change from Obama to Trump. Given the conclusion, the probability the first fact is true is extremely likely. Using the Standard Probabilities table on page 11, P(input|conclusion) = .95. 
Next comes a tricky question. What is P(input|~conclusion), the probability that the conclusion is false, give the graph data? 
Looking at the graph, that is extremely unlikely. The graph clearly shows the trend begun under the Obama administration continued with no change under Trump. The authors are not aware of any policy changes that the Trump administration made that caused higher economic growth or prevented slower economic growth. Even the Trump administration’s large tax cut, which has caused large deficit spending and is a form of economic stimulus, does not appear to have affected GDP much at all in the first 18 months of the Trump administration. Therefore, we assign see P(input|~conclusion) as extremely unlikely. Using the Standard Probability table, it receives a .05. This gives:
P(conclusion|input) = .001 x .95 / (.001 x .95 + .999 x .05) = .09. That means that considering only the first fact, there’s a 9% chance the conclusion is true. 
The second fact is based on a study that analyzed the first 18 months of the Trump administration. According to the study, “analysis shows no difference between” the GDP performance data under Trump and performance under an average of similar economies. Since GDP tracks closely with food stamp use, the probability of the second fact is also extremely likely. It also has P(input|conclusion) = .95.
Once again, what is P(input|~conclusion), the probability that the argument conclusion is false, given the study’s conclusions? Again, that’s extremely unlikely so P(input|~conclusion) = .05.
 Because we are using decision chaining, the .09 posterior probability from the first input become the prior probability of the second input. This gives:
P(conclusion|input) = .09 x .95 / (.09 x .95 + .91 x .05) = .65. By adding the second fact we raised the conclusion from 9% to 65% true. That’s below our cutoff of 95%, so we need another input.
The third fact comes from the expert opinion of Michael Wiseman, a professor at George Washington University. He said “the biggest reason for the drop [in food stamp use] is ‘the ongoing economic recovery that begin in the first year of the Obama administration.’ ” That agrees completely with the conclusion, so it’s extremely likely to be true, given the conclusion. Its P(input|conclusion) = .95. By the same logic used before, P(input|~conclusion) = .05. The .65 posterior probability from the above calculation becomes the prior probability of the third input. This gives:
P(conclusion|input) = .91 x .95 / (.91 x .95 + .09 x .05) = .99 or 99%. This is well above our cutoff of 95% so we conclude the conclusion is true. There’s no need to search for additional rule inputs. We can stop this portion of the analysis and move on to something else.
Discussion
It’s counterintuitive that the conclusion probability of 99% exceeds any of the rule’s inputs, which except for the prior are all 95%. But that’s the way formal logic works. Our world is chock full of counterintuitive behavior, and this is just one more case.
The inputs can be processed in any order, as long as the same prior probability is used. The result would be the same. 
When might a rule input not be independent, and thus could not be used in this rule? Suppose the professor based his opinion on the study used in the second fact. Then the probability of the third fact would depend on the probability of the second fact, and those two facts would no longer be independent. This is similar to the principle that population samples must be independent. One sample should never be affected by another sample.
What happens if we decide that the third fact should not receive an extremely likely probability of 95% but a likely probability of 80%, since the opinion was not based on a study or inspection of the food stamp graph and could thus be mostly an educated guess? 
What should P(input|~conclusion) be in this case? What is the probability professor Michael Wiseman would say “the biggest reason for the drop [in food stamp use] is ‘the ongoing economic recovery that begin in the first year of the Obama administration.’ ” given that the conclusion was false, that Obama administration policies had not caused the continued economic growth? That is still extremely unlikely, so once again P(input|~conclusion) = .05. That would lead to the following for the third equation:
P(conclusion|input) = .65 x .80 / (.65 x .80 + .35 x .05) = .97 or 97%. That’s above the cutoff, so we would still conclude the conclusion is true. If it was below the cutoff we’d need a fourth fact, which would easily lead to a result above the cutoff. 
[bookmark: _GoBack]Checking our work with the standard form of Bayes Rule
Let’s check our math. In theory any form of Bayes Rule will give the same result. Let’s test this using the standard form of Bayes Rule on the three inputs. The standard form is:
P(conclusion|input) = P(conclusion) x P(input|conclusion) / P(input)
The first two variables on the right are the same for both forms. It’s the third variable, P(input), that differs. That’s what we must calculate as we add each input.
For the first fact P(input) equals the probability that “food stamp use continued to steadily fall at the same rate under the Trump administration” as shown in the graph is true. That probability is very high, somewhere around virtually certain. This means P(input) = .99. This gives:
P(conclusion|input) = .001 x .95 / .99 = .01
Compare this to the “no prior data form”, which was:
P(conclusion|input) = .001 x .95 / (.001 x .95 + .999 x .05) = .09
The results should be about the same, but they are not. What must P(input) be to get the same result? That’s easily calculated. .09 = .001 x .95 / P(input). This can be converted to P(input) = .001 x .95 / .09 which gives P(input) = .01. That makes no sense at all, because P(input) should be very high (around .99), not very low (around .01). We have found a large error of some kind in our calculation and must stop until the error is fixed.
A large clue is that 1 – .99 = .01.



Rule type: Inductive with dependent inputs
(This will be hard. May be able to subdivide it, make simplifying assumptions, etc.)
Working notes
1. What about independent versus dependent inputs? See page 244 of The Theory on naïve Bayes, which assumes independent events.
2. I didn’t see any implementations of the Bayesian Network approach to legal argument as described in the paper on Legal idioms: a framework for evidential reasoning. Lignado, 2013, Argument and Computation. This implies the concept has flaws, is unattractive to implementers, and so on. We thus have to be very careful. We cannot assume the approach as presented is correct.
3. On the positive side, once the tool is developed, organizations like the United Nations can use it for developing and reviewing arguments for policy decision-making. 
4. Structured Argument Analysis will not be mature until we ourselves are using it to write, analyze, and present our research. 

1 - P(conclusion|input) = .001 x .99 / ( .001 x .99 + .999 x .01) = .09.
2 - P(conclusion|input) = .09 x .99 / ( .09 x .99 + .91 x .01) = .91.
3 - P(conclusion|input) = .91 x .95 / ( .91 x .95 + .09 x .05) = .99.

1 - P(conclusion|input) = .001 x .95 / ( .001 x .95 + .999 x .05) = .09
2 - P(conclusion|input) = .09 x .95 / ( .09 x .95 + .91 x .05) = .65
3 - P(conclusion|input) = .65 x .95 / ( .65 x .95 + .35 x .05) = .97
P(conclusion|input) = .65 x .90 / ( .65 x .90 + .35 x .10) = .94.
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